Equivalence Checking of Quantum Circuits

Christian Schilling

christianms@cs.aau.dk

January 10, 2024

CLASSIQUE seminar @ Aalborg University

Research thrust Reliability and Trustworthiness

Approaches

Tensor networks

TDD-based approach

Evaluation

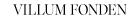
Conclusion

This talk is based on joint work¹

Christian Bøgh Larsen

Simon Brun Olsen

Kim Guldstrand Larsen



¹C. B. Larsen, S. B. Olsen, K. G. Larsen, and C. Schilling. "Contraction heuristics for tensor decision diagrams". *Entropy* (2024).

Approaches

Tensor networks

TDD-based approach

Overview

Short overview of quantum computing

Equivalence checking of quantum circuits

Existing approaches to equivalence checking

Tensor networks

Equivalence check based on tensor decision diagrams

Empirical evaluation

Conclusion and future work

Problem 00000

Approaches

Tensor networks

TDD-based approach

Evaluation

Conclusion

Overview

Short overview of quantum computing

Equivalence checking of quantum circuits

Existing approaches to equivalence checking

Tensor networks

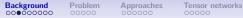
Equivalence check based on tensor decision diagrams

Empirical evaluation

Conclusion and future work

We have an idealized mathematical view, meaning:

- No noise
- No decoherence
- No mixed states



works TDD-bas

TDD-based approach

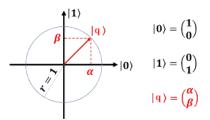
Evaluation 000000 Conclusion

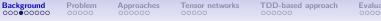
Single qubit

- Basis states |0
 angle and |1
 angle
- Superposition $|q\rangle = \alpha |0\rangle + \beta |1\rangle$

where $\alpha,\beta\in\mathbb{C}$ s.t. $|\alpha|^2+|\beta|^2=1$

• Written as vector: $|q\rangle \equiv \begin{vmatrix} \alpha \\ \beta \end{vmatrix}$





Evaluation

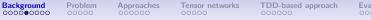
Conclusion

Multiple qubits: Tensor product

$$egin{aligned} |q_0q_1
angle &= |q_0
angle \otimes |q_1
angle \ &\equiv egin{bmatrix} lpha_0\ eta_0\ eta_0\ \end{pmatrix} \otimes egin{bmatrix} lpha_1\ eta_1\ eta_1\ \end{pmatrix} \end{aligned}$$

 $\equiv \alpha_{0}\alpha_{1}\left|00\right\rangle + \alpha_{0}\beta_{1}\left|01\right\rangle + \beta_{0}\alpha_{1}\left|10\right\rangle + \beta_{0}\beta_{1}\left|11\right\rangle$

$$\equiv \begin{bmatrix} \alpha_0 \alpha_1 \\ \alpha_0 \beta_1 \\ \beta_0 \alpha_1 \\ \beta_0 \beta_1 \end{bmatrix}$$



Evaluation 000000 Conclusion

Quantum gates and quantum circuits

- Analogous to classical logic gates and circuits
- Quantum gates transform quantum states
 Equivalent to (unitary) matrix multiplication with state vector

$$\ket{q'} = U \ket{q}$$

• Quantum circuits are compositions of multiple gates

$$|q'\rangle = U_m \cdot U_{m-1} \cdots U_2 \cdot U_1 |q\rangle$$

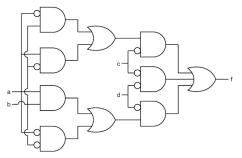
em Approaches

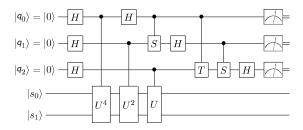
Tensor networks

TDD-based approach

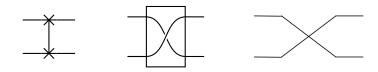
Evaluation 000000 Conclusion

Quantum gates and quantum circuits





Example: SWAP gate



• Swapping of two qubits

$$SW\!AP(|q_0q_1\rangle) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_0 \alpha_1 \\ \alpha_0 \beta_1 \\ \beta_0 \alpha_1 \\ \beta_0 \beta_1 \end{bmatrix} = \begin{bmatrix} \alpha_0 \alpha_1 \\ \beta_0 \alpha_1 \\ \alpha_0 \beta_1 \\ \beta_0 \beta_1 \end{bmatrix} = |q_1q_0\rangle$$

• Controlled negation of second qubit

$$CNOT(|q_0q_1\rangle) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha_0 \alpha_1 \\ \alpha_0 \beta_1 \\ \beta_0 \alpha_1 \\ \beta_0 \beta_1 \end{bmatrix} = \begin{bmatrix} \alpha_0 \alpha_1 \\ \alpha_0 \beta_1 \\ \beta_0 \beta_1 \\ \beta_0 \alpha_1 \end{bmatrix}$$

XOR

 $| = | q_0
angle \otimes | q_0 \oplus q_1
angle$

where \oplus is addition modulo 2 ("XOR")

Approaches

Tensor networks

TDD-based approach

Evaluation 000000 Conclusion

Example: Hadamard gate

н

• Creates a superposition

$$H(|q\rangle) = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} egin{bmatrix} lpha \ eta \end{bmatrix} = rac{1}{\sqrt{2}} egin{bmatrix} lpha + eta \ lpha - eta \end{bmatrix}$$

Examples

$$egin{aligned} & H(|0
angle) = rac{1}{\sqrt{2}} egin{bmatrix} 1 \ 1 \end{bmatrix} \equiv rac{1}{\sqrt{2}} |0
angle + rac{1}{\sqrt{2}} |1
angle \ & H(|1
angle) = rac{1}{\sqrt{2}} egin{bmatrix} 1 \ -1 \end{bmatrix} \equiv rac{1}{\sqrt{2}} |0
angle - rac{1}{\sqrt{2}} |1
angle \end{aligned}$$

Background

oblem Ap

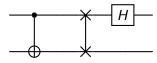
Tensor networks

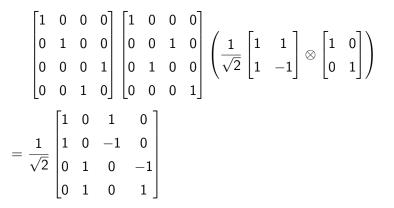
TDD-based approach

Evaluation

Conclusion

Example: A random circuit





Problem Approaches

Tensor networks

TDD-based approach

Evaluation

Conclusion

Overview

Short overview of quantum computing

Equivalence checking of quantum circuits

Existing approaches to equivalence checking

Tensor networks

Equivalence check based on tensor decision diagrams

Empirical evaluation

Conclusion and future work

Tensor networks 00000 TDD-based approach 000000

Evaluation

Conclusion

Quantum circuit compilation

Problem

0000

Approaches

- When designing quantum algorithms (= circuits), it is useful to have many types of gates available
- Real quantum computers only support a few types of gates
- A **compiler** translates a high-level circuit with many gate types to a low-level circuit with few gate types

Quantum circuit compilation

TDD-based approach

Tensor networks

- When designing quantum algorithms (= circuits), it is useful to have many types of gates available
- Real quantum computers only support a few types of gates
- A **compiler** translates a high-level circuit with many gate types to a low-level circuit with few gate types
- Different types of gates incur different amounts of error
- Deeper circuits incur more errors

Approaches

Problem

0000

• A compiler also tries to optimize circuits to reduce errors

Quantum circuit compilation

TDD-based approach

Tensor networks

- When designing quantum algorithms (= circuits), it is useful to have many types of gates available
- Real quantum computers only support a few types of gates
- A **compiler** translates a high-level circuit with many gate types to a low-level circuit with few gate types
- Different types of gates incur different amounts of error
- Deeper circuits incur more errors

Approaches

Problem

0000

- A compiler also tries to optimize circuits to reduce errors
- Important that the compiled circuits are equivalent (i.e., compute the same output for the same input)

Tensor networks TDD-based

TDD-based approach

Evaluation

Conclusion

How to implement a SWAP gate?

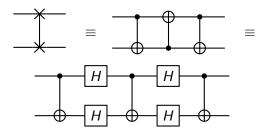
• The SWAP gate is **equivalent** to three CNOT gates

Background

Problem

00000

Approaches



How to implement a SWAP gate?

TDD-based approach

• The SWAP gate is **equivalent** to three CNOT gates

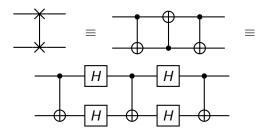
Tensor networks

Background

Problem

00000

Approaches



• We can easily prove this by comparing the matrices

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Algorithm to check equivalence of quantum circuits

TDD-based approach

Tensor networks

• Given, two circuits C_1 , C_2

Approaches

Problem

00000

Background

• Question: Are the circuits equivalent $(C_1 \equiv C_2)$?

Algorithm to check equivalence of quantum circuits

TDD-based approach

Tensor networks

• Given, two circuits C_1 , C_2

Approaches

- Question: Are the circuits equivalent $(C_1 \equiv C_2)$?
- Simple algorithm

Problem

00000

- 1. Compute matrix representations U_1 , U_2
- 2. Check equality up to a factor (global phase $e^{i\theta}$)

$$U_1 \stackrel{?}{=} e^{i\theta} \cdot U_2$$

Algorithm to check equivalence of quantum circuits

TDD-based approach

Tensor networks

• Given, two circuits C_1 , C_2

Approaches

- Question: Are the circuits equivalent $(C_1 \equiv C_2)$?
- Simple algorithm

Problem

00000

- 1. Compute matrix representations U_1 , U_2
- 2. Check equality up to a factor (global phase $e^{i\theta}$)

$$U_1 \stackrel{?}{=} e^{i\theta} \cdot U_2$$

• Problem: Matrices are exponentially large

For *n* qubits $\rightsquigarrow 2^n \times 2^n$

Equivalence checking is hard

- Checking exact equivalence is NQP-complete¹
- Checking approximate equivalence is QMA-complete^{2,3}
- Problems in these complexity classes are widely believed to require exponential computations in the worst case

¹Y. Tanaka. "Exact non-identity check is NQP-complete". *Int. J. Quantum Inf.* (2010).

²D. Janzing, P. Wocjan, and T. Beth. ""Non-identity-check" is QMA-complete". *Int. J. Quantum Inf.* (2005).

³Z. Ji and X. Wu. Non-identity check remains QMA-complete for short circuits. 2009. arXiv: 0906.5416.

Approaches •00000 Tensor networks

TDD-based approach

Evaluation

Conclusion

Overview

Short overview of quantum computing

Equivalence checking of quantum circuits

Existing approaches to equivalence checking

Tensor networks

Equivalence check based on tensor decision diagrams

Empirical evaluation

Conclusion and future work

TDD-based approach

Evaluation 000000 Conclusion

Approaches to equivalence checking

- ZX-calculus¹
- Encoding with decision diagrams²
- Tensor network contraction³
- Simulation-based approach for the Clifford group⁴
- Weighted model counting⁵

¹T. Peham, L. Burgholzer, and R. Wille. "Equivalence checking of quantum circuits with the ZX-calculus". *IEEE J. Emerg. Sel. Topics Circuits Syst.* (2022).

²L. Burgholzer and R. Wille. "Advanced equivalence checking for quantum circuits". *IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.* (2021).

³R. Orús. "Tensor networks for complex quantum systems". *Nature Reviews Physics* (2019).

⁴D. Thanos, T. Coopmans, and A. Laarman. "Fast equivalence checking of quantum circuits of Clifford gates". *ATVA*. 2023.

⁵J. Mei, T. Coopmans, M. M. Bonsangue, and A. Laarman. "Equivalence checking of quantum circuits by model counting". *IJCAR*. 2024.

TDD-based approach

Evaluation

Conclusion

Approaches to equivalence checking

ZX-calculus¹

Problem

- Encoding with decision diagrams² \leftarrow relevant later
- Tensor network contraction³ \leftarrow relevant later
- Simulation-based approach for the Clifford group⁴
- Weighted model counting⁵

Approaches

00000

¹T. Peham, L. Burgholzer, and R. Wille. "Equivalence checking of quantum circuits with the ZX-calculus". *IEEE J. Emerg. Sel. Topics Circuits Syst.* (2022).

²L. Burgholzer and R. Wille. "Advanced equivalence checking for quantum circuits". *IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.* (2021).

³R. Orús. "Tensor networks for complex quantum systems". *Nature Reviews Physics* (2019).

⁴D. Thanos, T. Coopmans, and A. Laarman. "Fast equivalence checking of quantum circuits of Clifford gates". *ATVA*. 2023.

⁵J. Mei, T. Coopmans, M. M. Bonsangue, and A. Laarman. "Equivalence checking of quantum circuits by model counting". *IJCAR*. 2024.

Background

Problem

Approaches

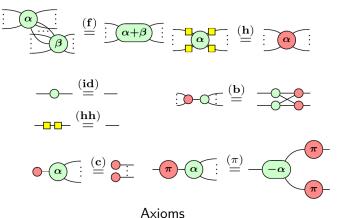
Tensor networks

TDD-based approach

Evaluation

Conclusion

Based on ZX-calculus^{1,2}



¹B. Coecke and R. Duncan. "Interacting quantum observables". *ICALP*. 2008.

²T. Peham, L. Burgholzer, and R. Wille. "Equivalence checking of quantum circuits with the ZX-calculus". *IEEE J. Emerg. Sel. Topics Circuits Syst.* (2022).

Background

Approaches

Tensor networks

(2)

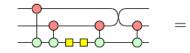
TDD-based approach

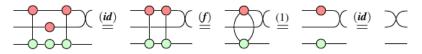
Evaluation

Conclusion

Based on ZX-calculus^{1,2}



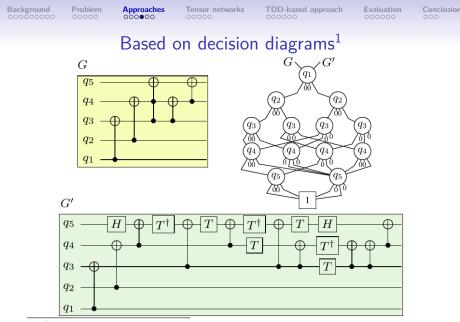




Example proof

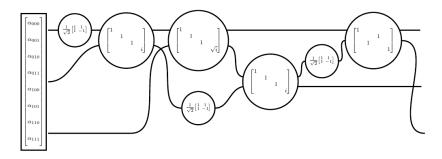
¹B. Coecke and R. Duncan. "Interacting quantum observables". *ICALP*. 2008.

²T. Peham, L. Burgholzer, and R. Wille. "Equivalence checking of quantum circuits with the ZX-calculus". *IEEE J. Emerg. Sel. Topics Circuits Syst.* (2022).



¹L. Burgholzer and R. Wille. "Advanced equivalence checking for quantum circuits". *IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.* (2021).

Based on tensor network contraction^{1,2}



¹X. Hong, Y. Feng, S. Li, and M. Ying. "Equivalence checking of dynamic quantum circuits". *ICCAD*. 2022.

²L. Burgholzer, A. Ploier, and R. Wille. "Simulation paths for quantum circuit simulation with decision diagrams - what to learn from tensor networks, and what not". *IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.* (2023).

Tensor networks

TDD-based approach

Evaluation

Conclusion

Based on a folklore theorem

Theorem 1. Let U, V be two unitaries on $n \ge 1$ qubits. Then U is equivalent to V if and only if the following conditions hold:

1. for all $j \in \{1, 2, \ldots, n\}$, we have $UZ_jU^{\dagger} = VZ_jV^{\dagger}$; and 2. for all $j \in \{1, 2, \ldots, n\}$, we have $UX_jU^{\dagger} = VX_jV^{\dagger}$.

Problem

Approaches

00000

Here, as before, we have denoted $Z_j = I \otimes \cdots \otimes I \otimes Z \otimes I \otimes \cdots \otimes I$, i.e. an n-fold tensor product of identity gates I with the Pauli Z gate at the j-th position. Analogously, $X_j = I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I$ where X is the Pauli X gate.

• Reduces to simulation for Clifford circuits¹

- $UZ_i U^{\dagger}$ is the same as computing $U |0\rangle^{\otimes n}$
- UX_jU^{\dagger} is the same as computing $U\ket{+}^{\otimes n}$
- Simulation is generally hard, but it is easy for Clifford circuits
- Extension to general circuits based on encoding as a weighted model counting problem²

¹D. Thanos, T. Coopmans, and A. Laarman. "Fast equivalence checking of quantum circuits of Clifford gates". *ATVA*. 2023.

²J. Mei, T. Coopmans, M. M. Bonsangue, and A. Laarman. "Equivalence checking of quantum circuits by model counting". *IJCAR*. 2024.

Problem Approaches

Tensor networks

TDD-based approach

Evaluation

Conclusion

Overview

Short overview of quantum computing

Equivalence checking of quantum circuits

Existing approaches to equivalence checking

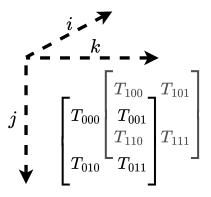
Tensor networks

Equivalence check based on tensor decision diagrams

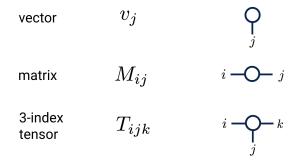
Empirical evaluation

Conclusion and future work

Generalization of vectors / matrices to higher dimensions



- Generalization of vectors / matrices to higher dimensions
- High-level graphical representation as a node with edges



Tensor networks

TDD-based approach

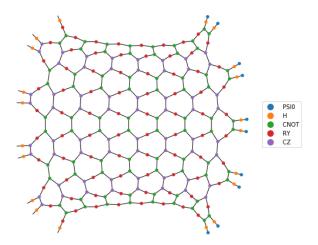
Tensor networks

00000

• Tensors can be arranged in a graph

Approaches

Background



Tensor networks

TDD-based approach

Tensor networks

00000

• Tensors can be arranged in a graph

Approaches

Background

Problem

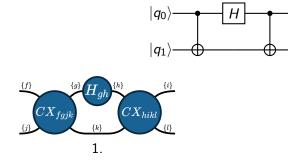
 Nodes with shared edges can be contracted (= merged)
 Corresponds to matrix-vector and matrix-matrix multiplication for special cases

$$\overline{}_{i} \overline{O_{j}} O = \sum_{j} A_{ij} v_{j}$$

$$\overline{}_{i} \overline{O_{j}} O_{k} = \sum_{j} A_{ij} B_{jk} = AB$$

Example

 Initial tensor network has one tensor for each gate Three choices for contraction ({g}, {h}, {k})



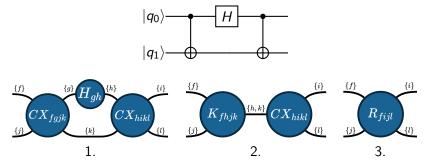
Example

- Initial tensor network has one tensor for each gate Three choices for contraction ({g}, {h}, {k})
- 2. Contraction of CX_{fgjk} and H_{gh} via $\{g\}$



Example

- Initial tensor network has one tensor for each gate Three choices for contraction ({g}, {h}, {k})
- 2. Contraction of CX_{fgjk} and H_{gh} via $\{g\}$
- 3. Contraction of remaining two tensors



Application: Quantum simulation on classical computer²

- Contract tensors in smart orders
- Different contraction heuristics to minimize floating-point operations, size, etc.¹

¹J. Gray and S. Kourtis. "Hyper-optimized tensor network contraction". *Quantum* (2021).

²I. L. Markov and Y. Shi. "Simulating quantum computation by contracting tensor networks". *SIAM J. Comput.* (2008).

Problem Approaches

Tensor networks

TDD-based approach

Evaluation

Conclusion

Overview

Short overview of quantum computing

Equivalence checking of quantum circuits

Existing approaches to equivalence checking

Tensor networks

Equivalence check based on tensor decision diagrams

Empirical evaluation

Conclusion and future work

TDD-based approach

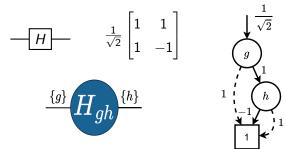
Evaluation

Conclusion

Tensor decision diagrams (TDDs)

- Alternative, unique representation of a tensor
- Informal introduction by example

Example: Hadamard gate, tensor, and TDD



Alternative "reverse scheme" for equivalence¹ $C_1 \equiv C_2 \iff \exists \theta : U_1 = e^{i\theta} \cdot U_2$ $\iff \exists \theta : U_1 \cdot U_2^{\dagger} = e^{i\theta} \cdot I \iff C_1 C_2^{-1} \equiv C_I$

TDD-based approach

Tensor networks

- C_2^{-1} is the inverted C_2 (reversed and each gate inverted)
- Allows to combine both circuits

Approaches

Problem

¹G. F. Viamontes, I. L. Markov, and J. P. Hayes. "Checking equivalence of quantum circuits and states". *ICCAD*. 2007.

Alternative "reverse scheme" for equivalence¹ $C_1 \equiv C_2 \iff \exists \theta : U_1 = e^{i\theta} \cdot U_2$ $\iff \exists \theta : U_1 \cdot U_2^{\dagger} = e^{i\theta} \cdot I \iff C_1 C_2^{-1} \equiv C_I$

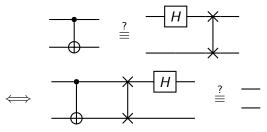
TDD-based approach

Tensor networks

• C_2^{-1} is the inverted C_2 (reversed and each gate inverted)

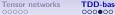
Allows to combine both circuits

Approaches



• (Coincidentally, the swap and Hadamard gates are self-inverse)

¹G. F. Viamontes, I. L. Markov, and J. P. Hayes. "Checking equivalence of quantum circuits and states". *ICCAD*. 2007.



TDD-based approach 000●00 Evaluation 000000 Conclusion

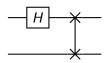
New algorithm for equivalence checking

Algorithm combines reverse scheme, tensor networks, and TDDs

Approaches

Given: Quantum circuits C_1 , C_2

Background



Tensor networks TDD-bas

TDD-based approach

Evaluation 000000 Conclusion

New algorithm for equivalence checking

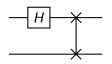
Algorithm combines reverse scheme, tensor networks, and TDDs

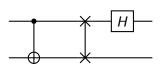
Approaches

Given: Quantum circuits C_1 , C_2

Background

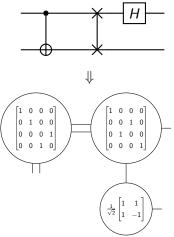
1. Construct circuit $C_1 C_2^{-1}$





∜

- Given: Quantum circuits C_1 , C_2
 - 1. Construct circuit $C_1 C_2^{-1}$
 - 2. Convert $C_1 C_2^{-1}$ to tensor network



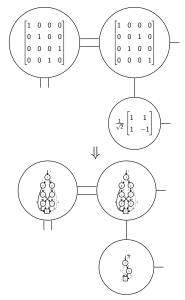
New algorithm for equivalence checking

Tensor networks

Algorithm combines reverse scheme, tensor networks, and TDDs

Approaches

- Given: Quantum circuits C_1 , C_2
 - 1. Construct circuit $C_1 C_2^{-1}$
 - 2. Convert $C_1 C_2^{-1}$ to tensor network
 - 3. Convert all tensors to TDDs



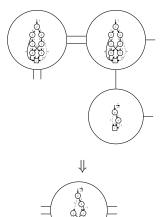
TDD-based approach

Evaluation 000000 Conclusion

Algorithm combines reverse scheme, tensor networks, and TDDs

Approaches

- Given: Quantum circuits C_1 , C_2
 - 1. Construct circuit $C_1 C_2^{-1}$
 - 2. Convert $C_1 C_2^{-1}$ to tensor network
 - 3. Convert all tensors to TDDs
 - 4. Contract TDD network



TDD-based approach

(TDDs on the right are only exemplary)

TDD-based approach

Evaluation

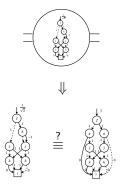
Conclusion

New algorithm for equivalence checking

Algorithm combines reverse scheme, tensor networks, and TDDs

Approaches

- Given: Quantum circuits C_1 , C_2
 - 1. Construct circuit $C_1 C_2^{-1}$
 - 2. Convert $C_1 C_2^{-1}$ to tensor network
 - 3. Convert all tensors to TDDs
 - 4. Contract TDD network
 - 5. Compare TDD to identity TDD



(TDDs on the right are only exemplary)

TDD-based approach

Evaluation

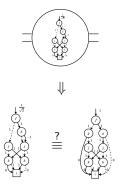
Conclusion

New algorithm for equivalence checking

Algorithm combines reverse scheme, tensor networks, and TDDs

Approaches

- Given: Quantum circuits C_1 , C_2
 - 1. Construct circuit $C_1 C_2^{-1}$
 - 2. Convert $C_1 C_2^{-1}$ to tensor network
 - 3. Convert all tensors to TDDs
 - 4. **Contract TDD network** ← how?
 - 5. Compare TDD to identity TDD



(TDDs on the right are only exemplary)

Approaches

Tensor networks

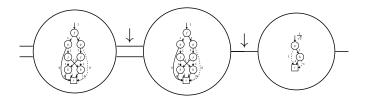
TDD-based approach

Evaluation

Conclusion

Lookahead heuristic for TDD contraction

- Greedy algorithm (finds a local optimum)
- In each contraction step:
 - 1. Evaluate all possible contractions



Tensor networks TDE

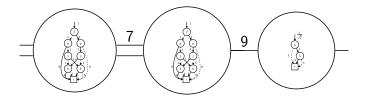
TDD-based approach

Evaluation

Conclusion

Lookahead heuristic for TDD contraction

- Greedy algorithm (finds a local optimum)
- In each contraction step:
 - 1. Evaluate all possible contractions
 - 2. Measure size of resulting TDDs



TDD-based approach

Evaluation

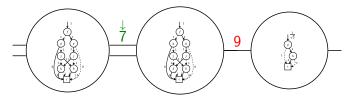
Conclusion

Lookahead heuristic for TDD contraction

- Greedy algorithm (finds a local optimum)
- In each contraction step:

Approaches

- 1. Evaluate all possible contractions
- 2. Measure size of resulting TDDs
- 3. Execute a contraction with smallest output



TDD-based approach

Evaluation

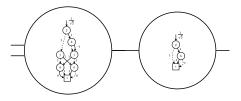
Conclusion

Lookahead heuristic for TDD contraction

- Greedy algorithm (finds a local optimum)
- In each contraction step:

Approaches

- 1. Evaluate all possible contractions
- 2. Measure size of resulting TDDs
- 3. Execute a contraction with smallest output



Evaluation

Conclusion

Lookahead heuristic for TDD contraction

- Greedy algorithm (finds a local optimum)
- In each contraction step:

Approaches

Problem

- 1. Evaluate all possible contractions
- 2. Measure size of resulting TDDs
- 3. Execute a contraction with smallest output
- Why should this scale?
 - Network is sparsely connected
 - Initial contractions (with many tensors) are cheap
 - Results can be stored for later iterations
- Still, step 1. is quite expensive

Counting heuristic for TDD contraction

- Goal: Imitate lookahead heuristic without expensive step 1
- Empirical observation: Lookahead heuristic prefers to distribute the contractions over the tensor network

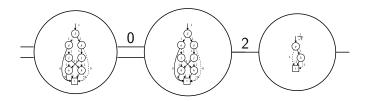
¹We set one edge to "2" to get an interesting example

Counting heuristic for TDD contraction

- Goal: Imitate lookahead heuristic without expensive step 1
- Empirical observation: Lookahead heuristic prefers to distribute the contractions over the tensor network
- In each contraction step:

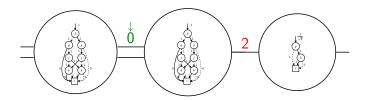
Approaches

1. Select a pair of nodes with longest non-usage¹



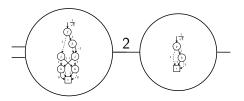
Counting heuristic for TDD contraction

- Goal: Imitate lookahead heuristic without expensive step 1
- Empirical observation: Lookahead heuristic prefers to distribute the contractions over the tensor network
- In each contraction step:
 - 1. Select a pair of nodes with longest non-usage¹



Counting heuristic for TDD contraction

- Goal: Imitate lookahead heuristic without expensive step 1
- Empirical observation: Lookahead heuristic prefers to distribute the contractions over the tensor network
- In each contraction step:
 - 1. Select a pair of nodes with longest non-usage¹



Evaluation

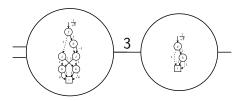
Conclusion

Counting heuristic for TDD contraction

- Goal: Imitate lookahead heuristic without expensive step 1
- Empirical observation: Lookahead heuristic prefers to distribute the contractions over the tensor network
- In each contraction step:

Approaches

- 1. Select a pair of nodes with longest non-usage¹
- 2. Update usage statistics of neighboring edges



Problem Approaches

Tensor networks

TDD-based approach

Evaluation • 00000 Conclusion

Overview

- Short overview of quantum computing
- Equivalence checking of quantum circuits
- Existing approaches to equivalence checking
- Tensor networks
- Equivalence check based on tensor decision diagrams
- Empirical evaluation
- Conclusion and future work

Evaluation

Conclusion

Quantum circuits in evaluation

- Circuits from MQT Bench¹ with varying number of qubits at two compilation levels (level 1 and 3 (out of 4)) with significantly different gate sets and layouts
 - Deutsch-Jozsa algorithm (DJ)
 - Greenberger-Horne-Zeilinger state preparation (GHZ)
 - Graph state preparation (GS)
 - Quantum Fourier transformation (entangled qubits) (QFTE)
 - Real amplitudes ansatz with random parameters (RAR)
 - W state preparation (WS)

¹N. Quetschlich, L. Burgholzer, and R. Wille. "MQT Bench: Benchmarking software and design automation tools for quantum computing". *Quantum* (2023).



Types of experiments

- 1. Compare heuristics to each other
- 2. Compare heuristics to heuristics from cotengra¹
- 3. Compare heuristics to QCEC² (decision diagrams)

¹J. Gray and S. Kourtis. "Hyper-optimized tensor network contraction". *Quantum* (2021).

²L. Burgholzer and R. Wille. "QCEC: A JKQ tool for quantum circuit equivalence checking". *Softw. Impacts* (2021).

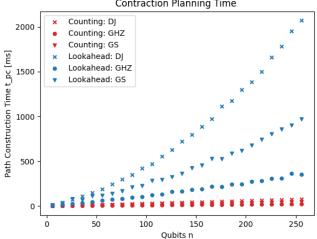
Approaches

Tensor networks

TDD-based approach

Evaluation 000000

Comparison of own heuristics



Contraction Planning Time

Comparison of own heuristics

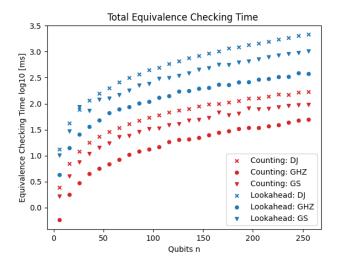
TDD-based approach

Evaluation

Tensor networks

Approaches

Background



Background Prob

Approaches

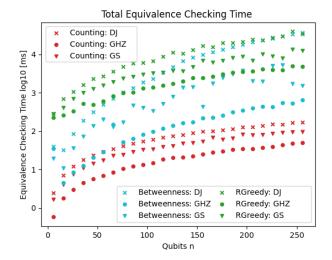
Tensor networks

TDD-based approach

Evaluation

Conclusion

Comparison to cotengra



Background

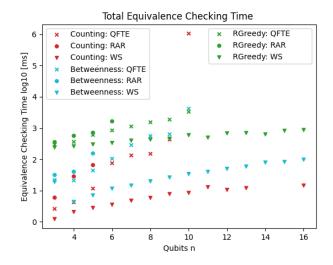
Approaches

Tensor networks

TDD-based approach

Evaluation 000000

Comparison to cotengra



Comparison to QCEC

TDD-based approach

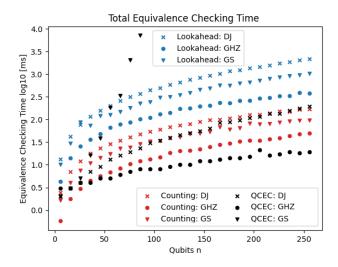
Evaluation

Tensor networks

Background

Problem

Approaches



Background

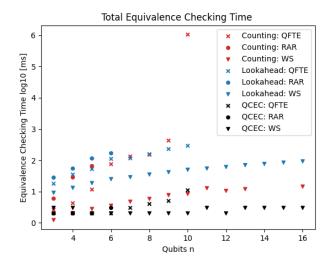
Approaches

Tensor networks

TDD-based approach

Evaluation 000000

Comparison to QCEC



Problem Approaches

Tensor networks

TDD-based approach

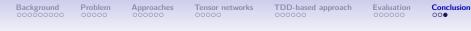
Evaluation

Conclusion ●○○

Overview

- Short overview of quantum computing
- Equivalence checking of quantum circuits
- Existing approaches to equivalence checking
- Tensor networks
- Equivalence check based on tensor decision diagrams
- Empirical evaluation
- Conclusion and future work

- Integration of "reverse scheme" and TDD networks
- Lookahead heuristic (greedy)
- Counting heuristic (cheap approximation)
- Evaluation:
 - Outperforms cotengra's heuristics
 - Often keeps up with QCEC



Future work

- Evaluate beyond equivalence checking
- Exploit parallelization (CPU, GPU)
- Find other heuristics
 - Generalize tensor network heuristics to TDD networks
 - Identify equivalent subcomponents (modularity)
 - Employ machine learning
- New PhD project since December 2024

