
Reachability for
weakly nonlinear systems

using Carleman linearization

Marcelo Forets, Christian Schilling

SIAM Conference on Computational Science and Engineering

2023
based on work presented at Reachability Problems 2021



Reachability Linearization Conservative approximation Evaluation Conclusion

Overview

Reachability for continuous systems

Carleman linearization

Conservative approximation

Evaluation

Conclusion

1 / 16



Reachability Linearization Conservative approximation Evaluation Conclusion

Overview

Reachability for continuous systems

Carleman linearization

Conservative approximation

Evaluation

Conclusion

2 / 16



Reachability Linearization Conservative approximation Evaluation Conclusion

Reachability for linear continuous systems
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Reachability for nonlinear continuous systems
• Several proposals exist, e.g., based on Taylor models1

• T3 = 0.394 − 0.393t + 0.182t2 + 0.014t3 + [−0.946, 0.803]

• T8 = 0.394 − 0.393t + 0.182t2 + 0.014t3 − 0.054t4 +
0.024t5 + 0.001t6 − 0.005t7 + 0.001t8 + [−0.041, 0.025]

1Berz and Makino. Reliab. Comput. (1998).
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State of the art in continuous reachability

• Linear systems
• Arbitrary precision
• Wrapping-free algorithms
• Thousands of dimensions1

• Nonlinear systems
• Arbitrary precision
• Wrapping effect
• Only very few dimensions

1Bogomolov, Forets, Frehse, Podelski, and Schilling. Inf. Comput. (2022).
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Kronecker product

x ⊗ x := (x2
1 , x1x2, x2x1, x2

2 )T (x ∈ R2)

x⊗k := x ⊗ · · · ⊗ x︸ ︷︷ ︸
k times

A ⊗ B :=


a11B · · · a1nB

...
...

am1B · · · amnB


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Quadratic ODEs

• Polynomial ODEs can be reduced to quadratic form

dx(t)
dt = F1x︸︷︷︸

“linear behavior”

+ F2x⊗2︸ ︷︷ ︸
“nonlinear behavior”

(1)

• Assume that F1 and F2 are time invariant
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Carleman linearization1

• Assume a quadratic system (1) dx(t)
dt = F1x + F2x⊗2

of dimension n with initial condition x(0) = x0

• Introducing auxiliary variables ŷj := x⊗j , j > 0 leads to
equivalent but infinite linear system

• Truncation at order N yields approximation

dŷ(t)
dt = Aŷ (2)

where ŷ(0) = ŷ0 = (x0, x⊗2
0 , . . . , x⊗N

0 )T and A on next slide

• Dimension of (2) is O(nN)

1Carleman. Acta Mathematica (1932).
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Carleman linearization1

A :=



A1
1 A1

2 0 0 · · · 0
0 A2

2 A2
3 0 · · · 0

0 0 A3
3 A3

4 0
...

...
...

... . . . . . . 0
0 0 · · · 0 AN−1

N−1 AN−1
N

0 0 · · · 0 0 AN
N



Ai
i+i ′−1 :=

i∑
ν=1

i factors︷ ︸︸ ︷
In ⊗ · · · ⊗ Fi ′

↑
ν-th position

⊗ · · · ⊗ In (i ′ ∈ {1, 2})

1Carleman. Acta Mathematica (1932).
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Example: Logistic equation

• dx(t)
dt = rx

(
1 − x

K

)
r > 1, K > 0

• Quadratic form: dx(t)
dt = ax + bx2 where a = r , b = − r

K
• Lifting: ŷj := x j with derivatives ŷ ′

j = jaŷj + jbŷj+1 (j > 0)

• Truncate at order N = 4:

dŷ(t)
dt =


a b 0 0
0 2a 2b 0
0 0 3a 3b
0 0 0 4a

 ŷ , ŷ(0) =


x0

x2
0

x3
0

x4
0


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Error bound
dx(t)

dt = F1x + F2x⊗2 (1)
• Let λ1 be the eigenvalue of F1 with largest real part

• We call (1) weakly nonlinear if R := ∥x0∥∥F2∥
|Re(λ1)| < 1

• We call (1) dissipative if Re(λ1) < 0

• Error of j-th block of variables is ηj(t) := x⊗j(t) − ŷj(t)
Theorem1

If (1) is weakly nonlinear and dissipative, the error of the
N-truncated linear system satisfies (for all t ≥ 0)

∥ηj(t)∥ ≤ ∥x0∥RN(1 − eRe(λ1)t)N

1Liu et al. Proc. Natl. Acad. Sci. (2021).
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Evaluation: SEIR model1

• F1 =


− Λ

P − rvac 0 0
0 − Λ

P − 1
Tlat

0
0 1

Tlat
− Λ

P − 1
Tinf



• F2 =


0 0 − rtra

P 0 0 0 0 0 0
0 0 rtra

P 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


• R ≈ 0.68, Re(λ1) ≈ −0.19

1Pan et al. JAMA (2020).
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Evaluation: SEIR model1

• No error estimation

1Pan et al. JAMA (2020).
14 / 16



Reachability Linearization Conservative approximation Evaluation Conclusion

Evaluation: SEIR model1

• Error estimation and re-estimation at t = 4

1Pan et al. JAMA (2020).
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Evaluation: SEIR model1

no error bound incl. error bound
TM 6.14 s

Carleman N = 2: 0.006 s N = 5: 0.185 s

1Pan et al. JAMA (2020).
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Conclusion and future work
• Carleman linearization of quadratic systems

• Reachability analysis for set-based approximation
• Weakly nonlinear and dissipative systems
• Low orders often suffice
• Can be faster than nonlinear solvers
• Error bound for conservative results (wrapping-free!)

Future work
• Exploit problem structure (Kronecker product, sparse

block-bidiagonal matrix, . . . )

• Automatic re-estimation of error bounds

• Initial condition beyond hyperrectangles
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