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AI control 3 steps to safety Conclusion

Reach-avoid specification and reach-avoid problem

Reach-avoid specification:
• Given:

• Set of initial states X0 ⊆ Rn

• Set of goal states G ⊆ Rn

• Set of error states E ⊆ Rn

• Time bound T
• Aim: starting at X0, reach G within time T while avoiding E
• Covers many real-world scientific and engineering problems

Reach-avoid problem:
• Does a given system satisfy a reach-avoid specification?
• Undecidable for nonlinear dynamics
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Solution strategy for the reach-avoid problem
• Verify: all trajectories lead to goal states avoiding error states

• Equivalent to computing the reachable states R and
proving R ∩ E = ∅ ∧ RT ⊆ G

• R only computable under strong restrictions
• Proving R̂ ∩ E = ∅ ∧ R̂T ⊆ G is sufficient,

where R̂ is an overapproximation of R
• Challenge in practice: trade-off between precision and scalability
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Research problems for control systems

Controller Environment

system state

control action

Reach-avoid problem:
• Does a given controller satisfy a reach-avoid specification?
• Undecidable for nonlinear dynamics
• Need ways to compute the reachable states R (resp. an

overapproximation R̂) for both the controller and the environment

Synthesis problem:
• Find a controller that satisfies a reach-avoid specification
• Even harder problem
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AI control systems

• Traditionally, the controller is designed by engineers

• Now we can machine-learn high performance controllers
• No safety guarantee and often intransparent (“black box”)
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AI safety1

“How much should AI safety research be prioritized?”
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2023 not including biased AI 2023 including biased AI

1Grace et al. (2023). Thousands of AI authors on the future of AI.
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Example: Unicycle model

Environment:
ẋ = v cos(θ)
ẏ = v sin(θ)
v̇ = u1 + w
θ̇ = u2

Specification:
x(0) ∈ X0

x(10)
!∈ G

Controller:
neural network
500 hidden units
τ = 0.2
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To safe AI control systems in three steps
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Step 1: Verification
• Goal: Given a controller, show that it satisfies the specification

• Focus: Precise, scalable, and quantitative verification techniques

S, Forets, and Guadalupe. AAAI. 2022.
Kochdumper, S, Althoff, and Bak. NASA Formal Methods. 2023.
S, Lukina, Demirović, and Larsen. NeurIPS. 2023.
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Step 2: Falsification
• Goal: Given a controller, show that it violates the specification

• Focus: Targeted falsification techniques

Bauer-Marquart, Boetius, Leue, and S. SPIN. 2022.
Goubault and Putot. HSCC. 2019.
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Step 3: Repair / Synthesis
• Goal: Given a violating controller, make it satisfy the specification

falsify ⇝ repair ⇝ verify

• Focus: Repair techniques for high controller performance

Bauer-Marquart, Boetius, Leue, and S. SPIN. 2022.
Vergari, Choi, Liu, Teso, and Van den Broeck. NeurIPS. 2021.
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Repair loop guided by counterexamples

Falsify Counterexample
found? Specification

satisfied?

VerifySpec

✓
Repair

no

yes

yes

no
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Learned controller guarded by synthesized shield

Brorholt, Jensen, Larsen, Lorber, and S. AISoLA. 2023. 12 / 13
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Vision

Performance  

Correctness✓

Performance✓

Correctness  

Performance✓

Correctness✓
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