Synthesis of hybrid automata from time-series data

Christian Schilling

September 6, 2022

Synthesis • 0 0 0 0 0 0 0 Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Model synthesis from data

Synthesis • 0 0 0 0 0 0 0 Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Model synthesis from data

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Data: Time series

Daily average temperature

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Model: Hybrid automata Heater:

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Model: Hybrid automata Heater:

t

0000000

Works covered in this presentation

- Offline and online synthesis of linear hybrid automata¹
- Online synthesis of hybrid automata with affine dynamics²
- Offline synthesis of parametric linear hybrid automata³

¹M. García Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik. *CAV*. 2019.
 ²M. García Soto, T. A. Henzinger, and C. Schilling. *HSCC*. 2021.
 ³M. García Soto, T. A. Henzinger, and C. Schilling. *ATVA*. 2022.

Parametric automata

Summary

Problem statement

- Find a model that is *close* to the data
- How to formalize that?

Parametric automata

Summary

Problem statement

- Find a model that is *close* to the data
- How to formalize that?
- Our answer:

Require that there is an execution σ that is $\varepsilon\text{-close}$ to the data

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Problem statement

- Require that there is an execution σ that is ε -close to the data
- Sometimes easier to find reference function¹ f that is δ -close to data² and then require execution σ that is $(\varepsilon \delta)$ -close to function f

¹For example the linear interpolation ²Distance d(f, t) defined in the obvious way

Problem statement

ε -capturing

A model ε -captures a function f if there exists an execution σ with $d(f, \sigma) \leq \varepsilon$

Synthesis problem

Given a finite set of functions \mathcal{F} and $\varepsilon \in \mathbb{R}_{\geq 0}$, construct a model that ε -captures each $f \in \mathcal{F}$

Problem statement

ε -capturing

A model ε -captures a function f if there exists an execution σ with $d(f, \sigma) \leq \varepsilon$

Synthesis problem

Given a finite set of functions \mathcal{F} and $\varepsilon \in \mathbb{R}_{\geq 0}$, construct a model that ε -captures each $f \in \mathcal{F}$

- Trivial problem: just have automaton with ε -close behavior for every $f \in \mathcal{F}$
- Additional constraints, e.g., as few locations as possible

0000000

Some underlying ideas

- A set of executions annotated with location names induces a unique minimal automaton
- Forget about automaton; instead synthesize executions with maximal sharing of locations
- Forget about guard and invariant constraints; only synthesize dynamics and then choose constraints as tightly as possible

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Online synthesis algorithm

 $\begin{aligned} \mathcal{H}_0 &:= \text{dummy automaton} \\ \text{for each } f_i \in \mathcal{F}: \\ & \text{if } f_i \text{ is } \varepsilon\text{-captured by } \mathcal{H}_i \\ & \mathcal{H}_{i+1} &:= \mathcal{H}_i \\ & \text{else} \\ & \mathcal{H}_{i+1} &:= \text{modify}(\mathcal{H}_i, f_i) \end{aligned}$

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Online synthesis algorithm

 $\begin{aligned} \mathcal{H}_0 &:= \text{dummy automaton} \\ \text{for each } f_i \in \mathcal{F}: \\ & \text{if } f_i \text{ is } \varepsilon\text{-captured by } \mathcal{H}_i \\ & \mathcal{H}_{i+1} := \mathcal{H}_i \\ & \text{else} \\ & \mathcal{H}_{i+1} := \text{modify}(\mathcal{H}_i, f_i) \end{aligned}$

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Overview

Model synthesis from data

Offline and online synthesis of linear hybrid automata

Online synthesis of hybrid automata with affine dynamics

Offline synthesis of parametric linear hybrid automata

Synthesis of linear hybrid automata¹

- Continuous dynamics: $\dot{x} = c$
- Constraints (invariants and guards): $\bigwedge_i a_i x \leq b_i$
- ε is given
- Synchronous vs. asynchronous switching

¹M. García Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik. CAV. 2019.

Synthesis of linear hybrid automata¹

- SMT-based offline synthesis with synchronous switching
- Size constraint: model has minimal number of locations
- Let f be a piecewise-linear function with m pieces switching at times $(t_j)_j$ and points $\mathbf{x}_j = f(t_j)$
- Formula $\phi_{f,\varepsilon}(\ell)$ satisfiable iff there exists ε -close execution with ℓ locations

$$\phi_{f,\varepsilon}(\ell) = \bigwedge_{j=1}^{m} \mathbf{y}_j = \mathbf{y}_{j-1} + \mathbf{b}_j(t_j - t_{j-1}) \wedge \bigwedge_{j=0}^{m} \mathbf{y}_j \in [\mathbf{x}_j]_{\varepsilon} \wedge \bigwedge_{j=1}^{m} \bigvee_{k=1}^{\ell} \mathbf{b}_j = \mathbf{c}_k$$

• Lift to set \mathcal{F} (i.e., offline synthesis) via

$$\phi_{\mathcal{F},\varepsilon}(\ell) = \bigwedge_{f \in \mathcal{F}} \phi_{f,\varepsilon}(\ell)$$

¹M. García Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik. CAV. 2019.

Synthesis of linear hybrid automata¹

- Membership- and reachability-based online synthesis with asynchronous switching
- Size constraints: minimal number of locations and for each vertex of invariants/guards there is ε-close witness in F
- Algorithm is complete for a class of automata (i.e., there is data to synthesize corresponding automaton)
- Algorithm to modify automaton
 - Try to find execution in existing model
 - If not found, try to extend constraints
 - If not successful, try to add transitions
 - If not successful, add locations

¹M. García Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik. CAV. 2019.

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Synthesis of linear hybrid automata¹

¹M. García Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik. CAV. 2019.

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Synthesis of linear hybrid automata¹

- Original model (top left)
- Synthesis results ($\varepsilon = 0.2$) after 10 resp. 100 traces (right)
- Sample input and output traces (bottom left)

¹M. García Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik. CAV. 2019.

Affine dynamics

Parametric automata

Summary

Synthesis of linear hybrid automata¹

^{time (ms)} ¹M. García Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik. *CAV*. 2019.

300

400

500

200

100

Linear hybrid automata

Affine dynamics ●○ Parametric automata

Summary 00

Overview

Model synthesis from data

Offline and online synthesis of linear hybrid automata

Online synthesis of hybrid automata with affine dynamics

Offline synthesis of parametric linear hybrid automata

Synthesis of hybrid automata with affine dynamics¹

- Continuous dynamics: $\dot{x} = Ax + b$
- Constraints (invariants and guards): $\bigwedge_i a_i x \leq b_i$ (as before)
- ε is given
- Synchronous switching
- Hierarchical search for minimal model modifications
- More complex because reachability is undecidable
 So we cannot always answer "is *f* ε-captured by *H*?"

Affine dynamics

Parametric automata

Summary

Synthesis of hybrid automata with affine dynamics¹

Affine dynamics

Parametric automata

Summary

Synthesis of hybrid automata with affine dynamics¹

Affine dynamics

Parametric automata

Summary

Synthesis of hybrid automata with affine dynamics¹

Affine dynamics

Parametric automata

Summary

Synthesis of hybrid automata with affine dynamics¹

Linear hybrid automata

Affine dynamics

Parametric automata

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Synthesis of hybrid automata with affine dynamics¹ $\dot{f}(t) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} f(t), f(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Initial states with ε -captured executions

11 / 26

Synthesis of hybrid automata with affine dynamics¹

Theorem

The set of initial states of ε -close executions (purple) is convex

Synthesis of hybrid automata with affine dynamics¹

• Over-/underapproximation obtained with refinement procedure

Parametric automata

Summary

Synthesis of hybrid automata with affine dynamics¹

• Sampling from overapproximation

Parametric automata

Summary

Synthesis of hybrid automata with affine dynamics¹

• Precision after many location switches

Synthesis of hybrid automata with affine dynamics¹

• Hierarchical search for model modifications

¹M. García Soto, T. A. Henzinger, and C. Schilling. HSCC. 2021.

Parametric automata

Summary

Synthesis of hybrid automata with affine dynamics¹

Electrocardiogram example

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Overview

Model synthesis from data

Offline and online synthesis of linear hybrid automata

Online synthesis of hybrid automata with affine dynamics

Offline synthesis of parametric linear hybrid automata

Synthesis of parametric linear hybrid automata¹

- Back to linear hybrid automata $(\dot{x} = c)$
- Synchronous switching
- Offline algorithm
- ε is not given

Problem statement

Given a finite set of time series and a discrete structure, find the minimal value $\varepsilon \in \mathbb{R}_{\geq 0}$ and an instantiated model \mathcal{H} such that \mathcal{H} ε -captures each time series

¹M. García Soto, T. A. Henzinger, and C. Schilling. ATVA. 2022.

Affine dynamics

Parametric automata

Summary

- 1. Fix discrete structure (by assigning location name to each piece in time series)
- Construct family of models (parameter polyhedron) such that any instantiated model ε-captures data Here ε is parameter itself → choose some minimizer

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Running example - InitializationON $x \ge 74.5$ $\dot{x} = -0.5x + 40$ $x \le 65.5$ $x \le 75$ $x \le 65.5$

We obtain two time series from simulations

Synthesis 0000000	Linear hybrid automata	Affine dynamics	Parametric automata ○○○●○○○○○○○○	Summary 00	
	_				

Running example - Initialization

We obtain two time series from simulations

Running example - Phase 1

- Send slope vectors of pieces to clustering algorithm
- Clustering cost for different numbers of clusters k, together with relative improvement compared to k-1

clusters	1	2	3	4	5	6	7	8
cost	259.76	17.07	11.80	2.46	0.78	0.09	0.04	0.01
rel. [%]	_	0.93	0.31	0.79	0.68	0.89	0.60	0.61

- Good values for k: 2, 4, 6 (we choose k = 2)
- Associated (one-dimensional) cluster centers (representing slopes): 4.53 and -4.46
- For both time series, assigned clusters are (1, 1, 2, 2, 2, 1) (i.e., symbolic location ℓ_1 for pieces 1, 2, 6 and ℓ_2 for others)

Running example - Result of Phase 1

- Only retain symbolic locations from clustering, i.e., each piece in time series has associated location
- Induces discrete structure of automaton

Running example - Phase 2 (one time series)

- $\ell(k)$ yields symbolic location of piece k
- Construct linear program with slopes of symbolic locations m_1, \ldots, m_λ as parameters
- Initial position x₀ is another parameter
- Executions must be ε -close, where ε is another parameter

$$\{(\mathbf{m}_1, \dots, \mathbf{m}_\lambda, \mathbf{x}_0, \varepsilon) \mid \mathbf{x}_0 \in \mathcal{B}_{\varepsilon}(d(t_0)), \\ \mathbf{x}_0 + (t_1 - t_0)\mathbf{m}_{\ell(1)} \in \mathcal{B}_{\varepsilon}(d(t_1)), \\ \mathbf{x}_0 + (t_1 - t_0)\mathbf{m}_{\ell(1)} + (t_2 - t_1)\mathbf{m}_{\ell(2)} \in \mathcal{B}_{\varepsilon}(d(t_2)), \\ \vdots \\ \mathbf{x}_0 + (t_1 - t_0)\mathbf{m}_{\ell(1)} + \dots + (t_p - t_{p-1})\mathbf{m}_{\ell(p)} \in \mathcal{B}_{\varepsilon}(d(t_p))\}.$$

Linear hybrid automata $\circ\circ$

Affine dynamics

Parametric automata

Summary

Running example - Result of Phase 1

• First half of (symmetric) constraints

				$x_0^{(1)}$	_	ε	\leq	68.91
0.76 <i>m</i> 1			+	$x_0^{(1)}$	_	ε	\leq	72.41
1.59 <i>m</i> 1			+	$x_0^{(1)}$	_	ε	\leq	75.00
1.59 <i>m</i> 1	+	0.72 <i>m</i> ₂	+	$x_0^{(1)}$	_	ε	\leq	70.44
1.59 <i>m</i> 1	+	$1.55 m_2$	+	$x_0^{(1)}$	_	ε	\leq	66.90
1.59 <i>m</i> 1	+	2.20 <i>m</i> ₂	+	$x_0^{(1)}$	_	ε	\leq	65.00
2.80 <i>m</i> 1	+	2.20 <i>m</i> 2	+	$x_0^{(1)}$	_	ε	\leq	71.81

Parametric automata

Summary 00

Phase 2 (multiple time series)

- Intersect parameter polyhedra of different time series
- Translated to LP: concatenate constraints
- Technical detail: need new \mathbf{x}_0 dimensions

Linear hybrid automata

Affine dynamics

Parametric automata

Summary 00

Correctness

Problem statement (recalled)

Given a finite set of time series and a discrete structure, find the minimal value $\varepsilon \in \mathbb{R}_{\geq 0}$ and an instantiated model \mathcal{H} such that \mathcal{H} ε -captures each time series

Theorem

Phase 2 solves problem in polynomial time

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Running example - Result of Phase 2

22 / 26

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Evaluation: Scalability

• r time series with p data points, n dimensions and λ locations

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Evaluation: Cell-cycle regulation

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Summary

- Algorithmic synthesis of hybrid automata from time series
- Common idea: $\mathcal{H} \varepsilon$ -captures (has execution ε -close to) data
- Minimality guarantees
- Features
 - Synthesis: online^{1,2} vs. offline^{1,3}
 - Dynamics: constant^{1,3} vs. affine²
 - Switching: synchronous^{1,2,3} vs. asynchronous¹
 - ε : given^{1,2} vs. not given³
 - Scalability: low^{1,2} vs. medium³

²M. García Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik. *CAV*. 2019.
³M. García Soto, T. A. Henzinger, and C. Schilling. *HSCC*. 2021.
⁴M. García Soto, T. A. Henzinger, and C. Schilling. *ATVA*. 2022.

Linear hybrid automata

Affine dynamics

Parametric automata

Summary

Future work

- Nonlinear dynamics
- Updates on transitions (resets)
- Better oracle for change points
- Backtracking of decisions
- Learning from negative examples